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Abstract 

 

Scene graphs are structured representations that can clearly convey objects and the 
relationships between them, but are often heavily biased due to the highly skewed, long-tailed 
relational labeling in the dataset. Indeed, the visual world itself and its descriptions are biased. 
Therefore, Unbiased Scene Graph Generation (USGG) prefers to train models to eliminate 
long-tail effects as much as possible, rather than altering the dataset directly. To this end, we 
propose Geometric and Semantic Improvement (GSI) for USGG to mitigate this issue. First, 
to fully exploit the feature information in the images, geometric dimension and semantic 
dimension enhancement modules are designed. The geometric module is designed from the 
perspective that the position information between neighboring object pairs will affect each 
other, which can improve the recall rate of the overall relationship in the dataset. The semantic 
module further processes the embedded word vector, which can enhance the acquisition of 
semantic information. Then, to improve the recall rate of the tail data, the Class Balanced 
Seesaw Loss (CBSLoss) is designed for the tail data. The recall rate of the prediction is 
improved by penalizing the body or tail relations that are judged incorrectly in the dataset. The 
experimental findings demonstrate that the GSI method performs better than mainstream 
models in terms of the mean Recall@K (mR@K) metric in three tasks. The long-tailed 
imbalance in the Visual Genome 150 (VG150) dataset is addressed better using the GSI 
method than by most of the existing methods. 
 
 
Keywords: unbiased scene graph generation, semantic dimension, geometric dimension, 
CBSLoss, long-tailed imbalance. 
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1. Introduction 

In the field of computer vision, progress has been made toward developing machines that can 
understand images, videos or other forms of content as well as humans do. By analyzing the 
relationships between pairs of objects, scene graph generation (SGG) constructs rich semantic 
information for tasks such as visual question answering (VQA)[1][2]. 

Inspired by the ladder of causation devised in THE BOOK OF WHY[3], unbiased scene 
graph generation (USGG) was first proposed by Tang et al.[4] using the Total Direct Effect 
(TDE) method. This method aims to solve the problem of long-tailed distributions in datasets. 

The severe imbalance in the distribution of the dataset has a significant impact on the model. 
If unconstrained in training, the model is prone to overfitting the tail class, and underfitting 
the head class. Many methods are effective in suppressing defects in long-tailed datasets. Yu 
et al.[5] proposed a novel Cognition Tree (CogTree) loss, which differentiated coarse-grained 
relationships first and then fine-grained relationships through the tree structure. Wang et al.[6] 
proposed a novel model based on memory that enriches the features of low-frequency relations. 
Yan et al.[7] proposed Predicate-Correlation Perception Learning (PCPL), which adaptively 
determines appropriate loss weights according to correlations among the predicate classes. Li 
et al.[8] proposed a novel model-agnostic Label Semantic Knowledge Distillation (LS-KD) 
method that can capture correlations between subject-object instances and different predicate 
categories. Most of the methods deal well with the case where the ground truth is tail relations 
and the predicted values are head relations. This is also the original intention of the USGG 
method, i.e., to transform relations from coarse to fine.  We found that the prediction accuracy 
of the tail relationship can be improved if constrained in the case where the ground truth is the 
tail relationship and the predicted value is the incorrect tail relationship.  However, the above 
methods focus on improving the predicted recall between tail predicates and other predicates 
and do not intentionally provide additional corrections for the case of misjudged tail predicates. 
To effectively suppress the long-tail problem, we designed the Class Balanced Seesaw Loss 
(CBSLoss), which improves the correct prediction rate of the tail samples. 

Visual relations can be divided into four categories: geometric, semantic, possessive, and 
miscellaneous. We start with semantic and geometric dimensions to enhance the capture of 
model features. Specifically, at the semantic level, we improve the classification accuracy and 
prediction accuracy of the model by deep learning processing of the model input data. In real 
world applications, adjacent objects may have numerous relationships. For instance, consider 
the situations "person uses computer" and "person lying on table."  The information about the 
position of the person can be used to deduce the spatial locations of the computer and table as 
"computer on table." Obviously, information about the proposed frame positions of 
neighboring object pairs for each object pair in the same image can assist in the training of that 
object pair. Thus, we designed a geometry module that enhances the acquisition of geometric 
information. By considering and processing these two dimensions together, we are able to 
better understand and utilize the features of the model, thus improving the performance and 
effectiveness of the model. 

The contributions of this work can be summarized as follows: 
(1) We designed a new geometric module to assist in the training of each object pair in the 

same image by utilizing the positional information of the bounding boxes of neighboring 
object pairs for that object pair. This helps the model to better understand the positional 
relationship between objects, thus improving the recall of scene graph generation. 

(2) We devised a new semantic module that exploits these rich semantic relationships. 
(3) We designed a new loss function, CBSLoss, for the tail relation, to improve the tail 
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relation recall by introducing a penalty factor when the predicted relation is a tail relation and 
the prediction is incorrect. 

2. Related Work 

2.1 Class Imbalance 
In the actual world, some relationships are distributed in only a few classes, whereas other 
relationships are dispersed among most categories. This is known as class imbalance. Deep 
learning faces significant obstacles as a result of this universal natural occurrence. Numerous 
improvements to one-stage[9][10] and two-stage[11][12] object detection have addressed the 
issue of foreground-background class imbalance. However, SGG is subject to foreground-
foreground class imbalance. 

USGG methods for resolving long-tailed data issues can be divided into three 
categories[13]. (1) Data augmentation on resampling for tail data. Knyazev et al.[14] proposed 
a data augmentation technique based on Generative Adversarial Networks (GANs). Yao et al. 
[15] proposed a visual distant supervision technique without applying any human-labeled data 
and devised a denoising framework to reduce noise. However, these methods do not perform 
well in the case of strong correlation between predicate labels. This phenomenon arises partly 
because re-balancing strategy simply utilizes the frequency of classes while ignoring their 
semantic relatedness[7]. For the existing re-balancing strategies fail to increase the diversity 
of the relation triplet features of each predicate, Li et al.[16] proposed a novel Compositional 
Feature Augmentation (CFA) strategy which is the first work to mitigate bias problem by 
increasing the diversity of triplet features in the USGG. (2) Elaborately designed training 
curricula or learning losses. Wei et al.[17] proposed a higher-order structure embedded 
network (HOSE-Net), which consists of structure-aware embedding-to-classifier (SEC) and 
hierarchical semantic aggregation (HSA) modules. This method incorporates structural 
information in the output space and reduces the number of subspaces. To reduce error 
propagation, Li et al.[18] devised the bipartite graph neural network (BGNN). Chiou et al.[19] 
proposed the dynamic label frequency estimation (DLFE) method to address the reporting bias 
problem. Suhail et al.[20] designed the energy-based model (EBM), which incorporates the 
scene graph structure into the learning framework. (3) Disentangling biased and unbiased 
representations. The TDE method employs counterfactual surgery to produce unbiased 
predictions. These methods are effective in improving the long-tail effect. However, the causal 
models constructed are always causally insufficient due to dataset noise that makes 
confounders unobservable. Sun et al.[21] proposed Two-stage Causal Modeling (TsCM). It 
uses long-tailed distributions and semantic confusions as confounders for structural causal 
modeling, and then decouples the causal intervention into two stages. 

 

2.2 Utilization of Semantic and Geometric Features 
Several models make clever use of semantic information. For example, the random intercept 
factor analysis (RiFa) method[22] reveals the rich semantic features of relations. This method 
uses the semantic distinctions between the subject and object of the same entity to prevent 
biased relations. The PCPL method adaptively determines the loss weights by using the 
correlations between the predicate classes. 

In terms of geometric information, the Motifs[23] model determines the number of 
relationships according to the object height. He et al.[24] incorporated relative position coding 
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into relationship matrices. The EBM model is trained on a loss function that incorporates the 
structure of the output space. Obviously, semantic and geometric information are crucial for 
the prediction of relationships. The GSI method effectively utilizes both semantic and 
geometric information, and mitigates the long-tail effect. 

3. Methods 
The base CogTree method is inspired by the prefrontal cortex and mimics the way human 
intuition distinguishes between associations that are significantly different from those that are 
similar to them. The main idea is to first use a biased SGG model to generate subtrees based 
on the frequency ranking of misclassified associations and then engage the model with subtree 
structures to mitigate long-tail effects. Our GSI method is shown in Fig. 1. The improvements 
are shown in color, and the subtree constructed in CogTree continues. 

The structure of the GSI method based on the Transformer model is shown in Fig. 1. In 
addition, the GSI method can be added to any of the SGG base models (Motifs, visual context 
tree model (VCTree)[25] and Transformer) and their improved models.  Since our method is 
model independent, the Transformer model is not changed, but follows the dual Transformer 
model in the CogTree method.  

The Transformer model is selected as an example. The dataset is first passed through the 
object detection model and then through the semantic and geometric modules to enhance the 
acquisition of image information before entering the Transformer model. After the 
Transformer model output, the relationship between object pairs is predicted using the loss 
function CBSLoss.  By using the tree structure of the subtree and the result of CBSLoss, the 
Tree-based Class Balanced Loss (TCBLoss) of the current node is generated, and finally, the 
two loss functions are combined to generate the relationship between the object pairs and the 
final scene graphs. 

The object encoder structure of the Transformer model, contains multiple object-to-object 
(O2O) blocks. The components of both the O2O and relation-to-object (R2O) blocks are the 
attention module, residual connection, layer normalization, feedforward module, residual 
connection, and layer normalization. The difference between the R2O and O2O blocks is the 
attention module. The O2O block uses self-attention while the R2O block uses cross-attention. 
In both the object decoder and relational decoder, the fully connected layer and softmax layer 
are used. 
 

 
Fig. 1.  The GSI method has three components: first, the Faster R-CNN object detection model is used 

to acquire object information; then, the double Transformer model (relation transformer and object 
transformer) and CBSLoss are used to predict each relationship probability; and finally, subtrees are 

used to generate the final scene graph. 
 

SCB TCBL L Lλ= +
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3.1 Geometric Feature Improvement 
The recall of SGG models can be improved by efficiently capturing the geometric information. 
Thus, this module improves on the CogTree method inability to fully exploit position 
information by using position embedding alone. Moreover, this module effectively addresses 
noise interference in the model by introducing thresholding. 

The two improvement modules for geometric and semantic dimension features are 
shown in Fig. 2. First, a series of convolution operations are performed on the semantic 
dimension features; then, splicing operations are performed on the semantic features, the new 
geometric features obtained from the geometric module, and the initial union region features; 
finally, a full join operation is performed on the spliced features to obtain the new union 
features. If the geometry module or semantic module is used separately in the ablation 
experiment, only the original joint region features are fully connected with the corresponding 
parts. 1 4m

bS × ×∈ ¡  and 1 4m
bO × ×∈ ¡  represent the position information in the batch image 

object pair <subject, object> and m is the total number of relational pairs in the batch sheet. 
Moreover, the number of columns (in this case, 4) corresponds to the bottom-left coordinate 
values 1x  and 1y  and the top-right coordinate values 2x  and 2y . The equations for 
processing  bS and bO  are shown in (1): 

' ( ( ( ( ( ( ))))))σ σ= drop FC drop FCX G G G G X ,                                  (1) 

where X  represents the input to bS or bO and 'X  represents the ' 1 4× ×∈ ¡ m
bS  or ' 1 4× ×∈ ¡ m

bO  

obtained after processing. σ  is the rectified linear unit (ReLU) function, FCG  is a linear layer, 
and dropG  is a dropout layer. 
 

 
Fig. 2.  The improvements in the geometric and semantic features are shown schematically. 

Convolutions are performed on the semantic features in the first line; then, the semantic features, 
geometric union features, and initial geometric union features are concatenated in the second line. 
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The initial union region feature vector 4096 1 1F × ×∈ ¡  corresponds to the object pair 
information in each batch of images. The first step of the improved geometric feature module 
is to determine the union region features 1 4kU × ×∈ ¡  in object pairs in each picture, where k 
represents the number of object pairs in each image. In the second step, the position 
information of the union region between object pairs and object pairs in U  is calculated to 
obtain the union region feature position matrix 1 4k kC _U × × ×∈ ¡ . In the third step, the  

1 1k kIoU × × ×∈ ¡  of the union region location is calculated. The inputs of this step are  ijC _U  
and iU , where i represents the current object pair and j represents another object pair in the 
same image. 

The maximum value of each row in IoUij is compared with the threshold s ( ( )s∈ 0, 1 ), and 
if the value is larger than s, subscripts i and j are obtained, and the corresponding value of the 
union region feature vector Fj is put into Mi according to the subscript j, as shown in (2). Since 
the values of IoUij in the experiments are mostly between 0.75 and 0.95, s is set to 0.80 in this 
paper. 

         i, max( )
0,

j
i

F IoU s
M

else
>

= 


                                               (2) 

Finally, the matrices F and M are fully connected to obtain the new union feature 
4096 1 1'F × ×∈ ¡  as (3): 

  ' ( ( ( ( ( ( , ))))))drop FC drop FCF G G G G F Mσ σ= ,                          (3) 

where 'F  is the improved union feature that is used as the input to the Transformer model to 
ensure that the model acquires rich geometric features. 
 

3.2 Semantic Feature Improvement 
The effective acquisition of semantic features in SGG models is critical for increasing SGG 
model accuracy. In the base method, the word embeddings from the GloVe model[26] and the 
object names are used as inputs to the transformer model. 

Fig. 2 shows a schematic diagram of the enhanced semantic and geometric features. 
Assume that the subject and object labels in the pair <subject, object> are obtained; then, the 
word embeddings obtained by feeding these labels into the GloVe model are iC  and jC , and 

the union word embedding 1 200 200
ijX × ×∈ ¡  can be formulated as (4): 

T
ij i jX C C= ⋅ ,                                                        (4) 

where ⋅  is the matrix dot product. To obtain richer information, this module performs a series 
of convolution operations on the obtained ijX . First, 5 5×  convolutions, the ReLU function, 
average pooling (avg pooling), and two 3 3×  convolutions are applied. Then, the module 
performs adaptive average pooling. Finally, the module performs two 1 1×  convolutions and 
applies the ReLU function to obtain ' 4096 1 1

ijX × ×∈ ¡ . '
ijX  is shown in (5). 

       ' 1 1 3 3
2 1( ( ( (...( ( ))...))))ij conv pool conv pool ijX G G G G Xσ× ×= ,                           (5) 
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where 1poolG  represents avg pooling, 2poolG denotes adaptive avg pooling, and n n
convG × indicates 

an n n×  convolution (where n is set to 1, 3, or 5). 
To better use the joint word embedding ijX , this feature is integrated into the union feature 

4096 1 1F × ×∈ ¡ , yielding ' 4096 1 1F × ×∈ ¡  as follows (6): 
   ' '( ( ( ( ( ( , ))))))drop FC drop FC ijF G G G G X Fσ σ= .                             (6) 

 

3.3 Learning with Tree Loss 

3.3.1 CBSLoss 
Cui et al.[27] proposed Class Balanced Loss (CBLoss) to address the effects of long-tailed 
data distributions on image segmentation tasks. 

However, CBLoss ignores the issue that when the situation arises where the ground truth 
is the tail predicate and the predicted value is not the correct tail predicate, it is not possible to 
constrain the situation effectively. This is because the hyperparameter of the weights in  takes 
the value of the number of ground-truth categories, and the formula cannot effectively 
"penalize" such cases when the number is relatively small (tail predicate). In response to this 
situation, a new loss function, the CBSLoss, which is inspired by the seesaw loss function[28], 
is created. When the ground truth label iT  is a tail predicate and the predicted probability jT  

is also a tail predicate ( i jT T≠ ), the weight iW  is defined as (7): 

       1( )( )
1 i

j q
i n

i

T
W

T
β
β
−

=
−

 ,                                                (7) 

where the hyperparameter β  is set to 0.999 ( [0,1)β ∈  ), as in the literature[5]. Moreover, 
the hyperparameter q is set to 3.0. The experimental results are shown in Table 1. Here, in
represents the number of true values of category i. 

The novel CBSLoss loss function is defined in (8), where predP  is the predicted probability 

and ig  is the ground truth label corresponding to node i. This loss function includes the 
softmax function and corresponding class-balanced weight

igW . 

S
exp( )

log( )
exp( )

i
i

j pred

g
CB g

jp p

p
L W

p
∈

= −
∑

.                                     (8) 
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Fig. 3.  The TCBLoss of the parent node can be calculated from the CBSLoss of the leaf node. 

 

3.3.2 TCBLoss 
In the structure of the subtree, the GSI method still uses the tree-based class balanced loss 
(TCBLoss), which is used in the base method [5]. TCBLoss is a loss function constructed for 
leaf nodes that consists of weight and a softmax function, as shown in (9). Fig. 3 shows an 
example of the calculation of TCBLoss. 

( )1
1

exp( )1 log( )
exp( )
k

k

j Sk

K S
TCB S

jk z Z

Z
L W

k z
−

= ∈

= −∑ ∑
,                                  (9) 

where 
ksW  is calculated as shown in (7) and K represents the number of leaves except for the 

number of nodes. The inputs to the softmax function are the average of the sum of the 
probabilities of all brother nodes of the predicate node as the probability of its parent node 

( 1)ksZ
−

 , which is the probability 
ksZ  of the node obtained by CBSLoss. The total loss function 

of the GSI method is the weighted sum of CBSLoss and TCBLoss, and the equation is shown 
in (10), where the hyperparameter λ  is 0.7, which is consistent with the literature [5]. 

         CBS TCBL L Lλ= + .                                                   (10) 

4. Experiments 

4.1 Dataset, Tasks and Metrics 
We use the Visual Genome 150 (VG150)[29] dataset, which is based on the Visual Genome 
dataset (VGD)[30], for experiments. This dataset includes 50 relationships and the 150 most 
common object categories in the VGD. 

In this paper, the mean recall@K (mR@K) metric is examined in three tasks: predicate 
classification (PredCls), scene graph classification (SGCls), and scene graph detection 
(SGDet). The evaluation metrics for K predictions (@20, @50, and @100) are compared. 

The mR@K statistic represents the average the predicate category R@K values. This 
metric provides a good indication of the model's influence on the dataset's unbalanced 
distribution. 
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The GSI method uses ResNeXt101-FPN as its backbone and is trained in the Ubuntu 
operating system with an Intel Core i7-10700KF CPU with 32 GB RAM and an M40 GPU. 
Moreover, the initial learning rate is set to 0.001, the weight decay is set to 0.0001, the 
optimizer is the stochastic gradient descent (SGD) optimizer, the total number of training 
iterations is set to 50000, and the batch size is set to 4. The other hyperparameters are 
consistent with those used in the literature [5]. 

The experimental results for various values of the hyperparameter q in CBSLoss are shown 
in Table 1. The experimental results show that when q is set to 3.0, the method achieves the 
best effect. A q value of 0.0 indicates that CBSLoss degenerates to CBLoss. 

The threshold s used in the geometry enhancement module is selected because the 
maximum value of IOU between object pairs in the same image is typically between 0.75 and 
0.95. Thus, to better capture the features of the most adjacent object pairs, we set the threshold 
s to 0.80. 
 

Table 1. q  values 
q  mR@20 mR@50 mR@100 

0.00 23.62 28.03 29.86 
0.50 0.59 1.00 1.38 
1.00 20.84 26.19 28.50 
1.50 0.59 1.00 1.38 
2.00 23.92 28.17 30.44 
3.00 22.43 28.70 30.54 
4.00 23.95 27.75 29.55 
5.00 23.45 28.33 29.48 

 

4.2 Comparison with state-of-the-art methods 
The GSI method is compared with three baseline models, Motifs, VCTree, and the 
Transformer, as well as their corresponding improved methods: TDE, STL[31], PCPL, 
CogTree, NARE[32], CAME[33] and LS-KD. In addition, the mR@K values of the IMP[34], 
KERN[35], GPS-Net[36], BGNN and NLS[37] models are listed in Table 2. 

Table 2 demonstrates the following findings: (1) Among the three baseline models, the 
Transformer performs better than Motifs and VCTree due to its advantages in discriminating 
objects and generating relationship representations.  (2) The GSI method can be added to the 
baseline models, and the results of the combined models are better than the results of the 
models alone for all three tasks. Thus, the combined methods are stable. (3) In the PredCls 
task, the Transformer-based GSI method clearly outperforms the VCTree-based and Motifs-
based GSI methods. In the SGCls task, the VCTree-based GSI method significantly 
outperforms the Motifs-based and Transformer-based GSI methods. Finally, in the SGDet task, 
the Motifs-based GSI method performs better than the VCTree-based and Transformer-based 
GSI methods. (4) Even when compared to state-of-the-art models such as BGNN, NLS, and 
the VCTree-based NARE, LS-KD method, the GSI method still shows advantages in the three 
tasks. (5) The Motifs-based GSI method shows a significant improvement over the Motifs-
based CogTree method on all three tasks. The experimental results show that the Motifs-based 
GSI method is a more significant upgrade than the VCTree-based and Transformer-based GSI 
methods. Thus, our method effectively mitigates the impact of long-tailed distributions in the 
dataset. 
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Table 2.  Comparison with state-of-the-art methods 
Model Method PredCls SGCls SGDet 

mR@20/50/100 mR@20/50/100 mR@20/50/100 
IMP[34] - -/9.80/10.50 -/5.80/6.00 -/3.80/4.80 

KERN[35] - -/17.70/19.20 -/9.40/10.00 -/6.40/7.30 
GPS-Net[36] - 17.40/21.3/22.8  10.00/11.80/12.60 6.90/8.70/9.80 
BGNN[18] - -/30.40/32.90 -/14.30/16.50  -/10.70/12.60 
NLS[37] - 13.30/17.70/19.50  8.30/10.40/11.10  5.30/7.30/8.70 

Motifs[23] - 
+TDE[4] 
+PCPL[7] 
+CogTree[5] 
+CAME[33] 

+LS-KD[8] 
+Ours 

10.80/14.00/15.30  
18.50/25.50/29.10  
19.30/24.30/26.10  
20.90/26.40/29.00  
18.10/26.20/32.00 

-/24.10/27.40 
22.76/28.66/30.91 

6.30/7.70/8.20 
9.80/13.10/14.90  
9.90/12.00/12.70  

12.10/14.90/16.10  
10.50/15.10/18.00 

-/13.80/15.20 
13.91/16.75/17.74 

4.20/5.70/6.60 
5.80/8.20/9.80 

8.00/10.70/12.60 
7.90/10.40/11.80 
6.70/9.30/12.10 

-/9.70/11.50 
8.58/11.67/13.88 

VCTree[25] - 
+TDE[4] 
+STL[30] 
+PCPL[7] 
+CogTree[5] 
+NARE[31] 
+CAME[33] 
+LS-KD[8] 
+Ours 

11.70/14.90/16.10  
18.40/25.40/28.70  
14.30/21.40/23.50  
18.70/22.80/24.50  
21.80/25.49/26.97  
18.00/21.70/23.10  
18.90/26.60/32.00 

-/24.20/27.10 
23.23/29.25/31.57 

6.20/7.50/7.90 
8.90/12.20/14.00  

10.50/14.60/16.60  
12.70/15.20/16.10  
15.40/18.80/19.90  
11.90/14.10/15.20  
11.70/17.00/20.50 

-/17.30/19.10 
17.50/20.68/21.93  

4.20/5.70/6.90 
6.90/9.30/11.10 
5.10/7.10/8.40 

8.10/10.80/12.60 
7.80/10.40/12.10 
7.10/8.20/8.70 

5.90/8.70/10.80 
-/9.70/11.30 

8.17/11.34/13.47 
Transformer - 

+TDE[4] 
+CogTree[5] 
+Ours 

14.40/18.50/20.20  
18.90/25.30/28.40  
23.62/28.03/29.86 
24.86/29.78/32.90 

8.60/11.50/12.30  
9.80/13.10/14.70  
13.00/15.70/16.60 
13.29/15.81/16.70 

5.60/7.70/9.00 
6.00/8.50/10.20 
8.35/10.34/12.02 
8.35/10.69/12.33 

 
The R@100 performance of each class is shown in Fig. 4 (a), and the head, body and tail 

distributions in the dataset and their respective averages are shown in Fig. 4 (d), (c), (b) and 
(e). We note the following findings: (1) The GSI method outperforms the CogTree method in 
terms of the R@100 metric. This result shows that the GSI method significantly improves both 
the mR@100 metric and the R@100 metric.  (2) Fig. 4 (e) and (b) show that the GSI method 
performs better than the CogTree method, even in the body of the data.  (3) Fig. 4 (a) and (b) 
demonstrate that the distribution between the classes is relatively even. 

Fig. 5 shows four pairs of visualization examples. In the first picture, the GSI method 
detects the relationship between a skier and a person, and the relationship between the skier 
and person is more specific than the ground-truth label (“standing on” is more specific than 
“on”).  In the second, third and fourth images, the GSI method detects more object pairs and 
their relationships than the other methods. 
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Fig. 4.  The prediction recall distribution of each relation in the PredCls task. 

 

 
Fig. 5.  Visualization of SGG by the ground truth (blue), Transformer + CogTree (orange) and 

Transformer-based GSI (red) methods. A blue line between two nodes indicates that all three models 
predict the same relationship; if only orange and red lines are visible, the ground truth and 

Transformer-based GSI model predict the same relationship; and if only a red line is visible, only the 
Transformer-based GSI model predicts the relationship between the object pairs. 

 

4.3 Ablation Experiments 
The Transformer-based GSI method was investigated through four ablation studies, and the 
experimental results are shown in Table 3. In the table, the following letters are used to 
represent the four improved parts: “S” represents the semantic enhancement module, “G” 
represents the geometric enhancement module, and CBSL  and CBL  represent the improved 
CBSLoss function and the original CBLoss function, respectively. 
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Table 3.  Ablation Experiments 
Model PredCls SGCls SGDet 

mR@20/50/100 mR@20/50/100 mR@20/50/100 
Transformer + CogTree 21.26/27.14/29.68 13.00/15.70/16.60 8.35/10.34/12.02 

Transformer + CogTree + S + CBL  22.14/27.70/30.55 12.95/15.44/16.55 8.45/10.60/12.18 

Transformer + CogTree + G + CBL  23.69/29.22/31.75 12.24/15.80/16.64 8.07/10.69/12.32 

Transformer + CogTree + CBSL  22.43/28.70/30.54 13.20/15.73/16.72 7.95/10.32/12.24 

Transformer + Ours 24.86/29.78/32.90 13.29/15.81/16.70 8.35/10.69/12.33 

 
Table 3 shows the results of the ablation experiments indicating the effect of each module 

on the model. We obtain several conclusions. (1) In the PredCls task, the geometric module 
improves the model most significantly, followed by the loss function module and the semantic 
module. (2) In the SGDet task, the geometric module improves the model most significantly, 
followed by the loss function module. (3) The semantic and geometric modules have the 
largest enhancement effect in the PredCls task due to the use of the ground-truth bounding box 
and labels in this task. The word embedding vector generated by the semantic module 
according to the labels relies heavily on the correctness of the labels. Moreover, the geometric 
module relies on the correctness of the bounding box to determine the degree of overlap among 
adjacent objects. 

5. Conclusions 
In this paper, we present the GSI method, a novel method for improving the mR@K metric on 
base model. This method can be applied to the basic SGG models and their improved models 
such as Motifs, VCTree and Transformer, and is model-independent. First, a geometric 
enhancement module is designed based on the idea that adjacent objects are related to the 
position relation. Second, a semantic enhancement module is designed to further enhance the 
semantic information. Finally, CBSL is designed to punish the incorrect tail relation, which also 
effectively improves the accuracy of tail relation prediction. In addition, this paper has some 
limitations, e.g., not introducing too much external information. In future work, we will further 
improve the long tail distribution of the data. The next step will be to consider incorporating 
more a priori, common-sense information into the model to improve model prediction 
performance. 
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